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ISRU and Regolith (  SPAacE RESOURCES
Thermal Properties of Icy Regolith \ _ RounpraBLE

. . |lce Favorability Map
« ISRU is the harnessing of local

natural resources at mission

destinations | s

. Water ice is one of the most valuable = 7 g
resources available on the Lunar T}
surface 0 Y

« Morphology of and location of ice
bearing regolith is poorly understood
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ISRU and Regolith
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Thermal Prospecting - LUSTR RoOUNDTABLE

SPARTA-A

e Under Development, SPARTA
measures volatiles using the line-
source method and relative humidity
probe

e Designed to be planet agnostic

CSM Volatile Prospecting

e Experiments at Colorado School of
Mines use pulsed heat source and
measuring cooling curves

e Reached accuracies of 1.8wt% with
known compaction

MTU PHCP

e The Percussive Hot Cone Penetrometer (PHCP) is a
tool developed at MTU as part of LUSTR funding
received in 2020

e Used in conjunction with a high frequency GPR } £ g\ . ‘

e Data collection every 10 cm up to Tm depth e BT e 00 BE ==

e Thermal profiles are supplemented by geotechnical a S - At '
data to inform compaction and cohesion
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lcy Regolith and Thermal Conductivity

~ -

T &k ™

— = —V?T
at  pC,

T = Temperature

T = Time

k = Thermal Conductivity q
p = Density

Cp = Heat Capacity
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Thermal Conduction Paths RoUNDTABLE
= Trapped Air
lce Formations
Discrete Sintered Cemented

e No ground-truth data on form of lunar
ice deposits

e Possible formations of water ice have
been proposed

e Two of most interest in our testing are

cemented ice and discrete ice
o  Valuable for testing as they can be
manufactured in large homogenous
guantities
o  Valuable for analysis as they represent

the two extremes of thermal conductivity

and strength q q q q q q q

Increasing Thermal
Conductivity
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Thermal Conduction Paths N RoOUNDTABLE

lce Formations

Discrete Sintered Cemented
e No ground truth data on form of lunar

ice deposits

e Possible formations of water ice have
been proposed

e Two of most interest in our testing are

cemented ice and discrete ice
o  Valuable for testing as they can be
manufactured in large homogenous
guantities
o  Valuable for analysis as they represent

the two extremes of thermal conductivity

and strength q q q q q q q

Increasing Thermal
Conductivity
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Lunar Regolith In-Situ Measurements

e During Apollo 15 and Apollo 17, astronauts investigated the thermal Particle Contact

e Thermal conductivity values were found to be very low J

¢ Subsurface regolith having a conductivity of 0.9 — 1.3 x1072 T% . A
e Comparing to solid basalt having a conductivity of ~ 2.7% {///\\\ (//A\\\\ {(/]A\\\"{i/k\\\\‘
e The drastic difference is primarily due to poor contact resistance M\ I ‘ ﬂ

between regolith particles, exasperated by lack of intestinal air in vacuum

Images of regolith agglutinates
from Lunar Source Book

(a) optical microscope photo
from Apollo 11

(b) electron photomicrograph of
Apollo 11 agglutinate
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Line-Source Test Setup

MTU Line-Source Setup

Purpose

e Method of determining thermal
properties of lunar regolith

e Regolith is poured into a hopper
containing a hot wire heat source and
compacted

e Thermocouples at fixed distances
record temperature profiles
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Line-Source Test Setup
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Test Campaign ROUNDTABLE

: : Test Ambient Pressure Vacuum Pressure
Testing Overview

e . Dry Low 0 wt% 0 wt%
e Test campaign investigated Regolith | Compaction: --
discrete icy regolith at <1.5 g/cm3
multiple compactions Med. 0 Wt% 0 wi%

use as a baseline of :
: High 0 wt% 0 wt%
comparison .
Compaction:
>1.7 g/lcm3
1.5 |3 6

Discrete Low : 3 6
lcy Compaction: wt% |[wt%
Regolith Porosity > 0.5
High : : 3 6
Compaction: wt% |[wt%
Porosity < 0.5
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Test Procedure ROUNDTABLE

Shaved ice and cold regolith are mixed to desired wt%
Sample is chilled in LN2 bath for 2 hours (~-170 C)
Regolith is loaded and spread on dumping tray

DTVAC brought to pressure, shroud temperature along
sublimation curve

Regolith is dumped into Hopper once DTVAC pressure
reaches 0.1 mTorr

Vibratory compaction to desired compaction level

Constant power supplied to wire heat source for 2 hours

Sample Preparation

Post test compaction measurements
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Line-Source Test Setup Srace RESOURCES

Test Procedure ROUNDTABLE

Shaved ice and cold regolith are mixed to desired wt%
Sample is chilled in LN2 bath for 2 hours (~-170 C)
Regolith is loaded and spread on dumping tray

DTVAC brought to pressure, shroud temperature along
sublimation curve

Regolith is dumped into Hopper once DTVAC pressure
reaches 0.1 mTorr

Vibratory compaction to desired compaction level

Constant power supplied to wire heat source for 2 hours

Precooling Sample

Post test compaction measurements
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Line-Source Test Setup Srace RESOURCES

Test Procedure ROUNDTABLE

Shaved ice and cold regolith are mixed to desired wt%
Sample is chilled in LN2 bath for 2 hours (~-170 C)
Regolith is loaded and spread on dumping tray

DTVAC brought to pressure, shroud temperature along
sublimation curve

Regolith is dumped into Hopper once DTVAC pressure
reaches 0.1 mTorr

Vibratory compaction to desired compaction level

Constant power supplied to wire heat source for 2 hours

Regolith Loaded into DTVAC

Post test compaction measurements
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View From Above
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« Line-Source procedure is often used to find thermal conductivity of
insulating materials

« With collected thermal curves, conductivity can be found various methods

« After a period of time, temperature rise can be approximated as an
exponential growth

Exponential Curve
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Exponential Fit
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T = Temperature T = Time
C, = Heat Capacity k = Thermal Conductivity
q= Heat/Length p= Bulk Density
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Thermal Conductivity of Dry MTU-LHT-1A RoOUNDTABLE

LS041 Medium Compaction: 1.514 g/cm3 Ice: 0 wt%
Fit Range: 2700 to 3000 Sec, K =0.2514

Mean Values

Low Compaction: 0.24 W/(m K)
Mid Compaction: 0.24 W/(m K)
High Compaction: 0.29 W/(m K)

N
o

-k
==

3}
Q.
&
(45]
}_
=
[45)]
(@]
=
©
H -
O

o
Thermal Conductivity (W/(m K))

Exponential fit curve (red line) is fit to linear portion of

temperature profiles (yellow/blue lines)
Compaction
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Compaction and Thermal Conductivity of lcy MTU-LHT-1A
04r

Temperature Pressure
-25t0-15C

Compaction | Weight Bulk Porosity
Goal % Water | Density
Ice

High 1.5 1.533
3 1539
6 1415

1248 —
1143 . | | e

3 6

1168 ' Weight% Ice

Thermal Conductivity (W/(m K))
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Results

Vacuum Data
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Compaction and Thermal Conductivity of lcy MTU-LHT-1A
0.035

Temperature Pressure

-60to -30 C

<0.1 mTorr Gl l T

Compaction
Goal

Weight
% Water
Ice

Bulk
Density

Porosity

High

1.5

1.355

8

1.464

6

1.14

Thermal Conductivity (W/(m K))
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Regolith pre-dump Post Dumping Post Compaction
into hopper Even after dumping into Vibratory compaction
Extremely low hopper, some trapped fluidizes simulant and

permeability traps air air may remain allows trapped air to
escape
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Results compared to real regolith ROUNDTABLE

Measurement Ice Content wt% | Compaction (g/cm3) | Conductivity Source
W/(m K)

Ambient Pressure
JSC Ambient 1.68 0.196 Yuan (2011)
MTU Ambient 1.51-1.8 0.26-0.37 This Study
MTU Discrete Icy : 1.14 - 1.54 0.19 - 0.31
Vacuum Pressure
Apollo Probes 950-250 cm lunar depth | 0.009 — 0.013 Langseth (1976)
JSC Vacuum 1.69 - 1.89 0.0019 - 0.031 Sakatani (2018)
1.70 0.0037 Hutter (2011)
MTU Vacuum 1.4-1.68 0.036 This Study

MTU Vacuum : 1.01 —1.46 0.007 - 0.37
Discrete Icy
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Overview and Conclusions \ RoOUNDTABLE

e Trend of conductivity increasing with bulk
density and water ice is clear in ambient
pressure freezer tests

e Vacuum Chamber testing did not follow

expected trends. Lots of possible reasons

o  Trapped air in regolith
o Different starting temperatures
o Pressure differences in testing

e Discrete ice has conductivities near that of
dry regolith

e Testing icy regolith in vacuum presents
design and procedural challenges
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lcy Regolith Thermal Vacuum Testing RoOUNDTABLE

Regolith clumping Icy regolith

Pressure Spikes During Dumping freezing to tray

Vibratory
Compaction
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e Further investigation into vacuum low compaction

results
o  Testing procedural changes to further reduce trapped air

e Testing of cemented regolith conductivities

o  Trapped air further a concern
o Is there significant changes in conductivity between vacuum

and ambient pressure

e Predictive model
o Model to predict thermal conductivity of icy regolith mixtures

and how compaction changes these values
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MTU-LHT-1A | ROUNDTABLE

Lunar Regolith

- Magpnification: X200.0 a7 ¥ Y 200um
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Thermal Data Geotech Data

i KRC trench tests, North Bin, PHCP velocity vs force
PHCP Trench Testing i

Thermal profiles at 14 Watts ' =
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